13 research outputs found

    Model-Based Approach for Diffuse Glioma Classification, Grading, and Patient Survival Prediction

    Get PDF
    The work in this dissertation proposes model-based approaches for molecular mutations classification of gliomas, grading based on radiomics features and genomics, and prediction of diffuse gliomas clinical outcome in overall patient survival. Diffuse gliomas are types of Central Nervous System (CNS) brain tumors that account for 25.5% of primary brain and CNS tumors and originate from the supportive glial cells. In the 2016 World Health Organization’s (WHO) criteria for CNS brain tumor, a major reclassification of the diffuse gliomas is presented based on gliomas molecular mutations and the growth behavior. Currently, the status of molecular mutations is determined by obtaining viable regions of tumor tissue samples. However, an increasing need to non-invasively analyze the clinical outcome of tumors requires careful modeling and co-analysis of radiomics (i.e., imaging features) and genomics (molecular and proteomics features). The variances in diffuse Lower-grade gliomas (LGG), which are demonstrated by their heterogeneity, can be exemplified by radiographic imaging features (i.e., radiomics). Therefore, radiomics may be suggested as a crucial non-invasive marker in the tumor diagnosis and prognosis. Consequently, we examine radiomics extracted from the multi-resolution fractal representations of the tumor in classifying the molecular mutations of diffuse LGG non-invasively. The proposed radiomics in the decision-tree-based ensemble machine learning molecular prediction model confirm the efficacy of these fractal features in glioma prediction. Furthermore, this dissertation proposes a novel non-invasive statistical model to classify and predict LGG molecular mutations based on radiomics and count-based genomics data. The performance results of the proposed statistical model indicate that fusing radiomics to count-based genomics improves the performance of mutations prediction. Furthermore, the radiomics-based glioblastoma survival prediction framework is proposed in this work. The survival prediction framework includes two survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) challenges in 2017 and 2018. The first survival prediction pipeline offered the best overall performance in the 2017 Challenge, and the second survival prediction pipeline offered the best performance using the validation dataset. In summary, in this work, we develop non-invasive computational and statistical models based on radiomics and genomics to investigate overall survival, tumor progression, and the molecular classification in diffuse gliomas. The methods discussed in our study are important steps towards a non-invasive approach to diffuse brain tumor classification, grading, and patient survival prediction that may be recommended prior to invasive tissue sampling in a clinical setting

    Efficacy of Radiomics and Genomics in Predicting TP53 Mutations in Diffuse Lower Grade Glioma

    Get PDF
    An updated classification of diffuse lower-grade gliomas is established in the 2016 World Health Organization Classification of Tumors of the Central Nervous System based on their molecular mutations such as TP53 mutation. This study investigates machine learning methods for TP53 mutation status prediction and classification using radiomics and genomics features, respectively. Radiomics features represent patients\u27 age and imaging features that are extracted from conventional MRI. Genomics feature is represented by patients’ gene expression using RNA sequencing. This study uses a total of 105 LGG patients, where the patient dataset is divided into a training set (80 patients) and testing set (25 patients). Three TP53 mutation prediction models are constructed based on the source of the training features; TP53-radiomics model, TP53-genomics model, and TP53-radiogenomics model, respectively. Radiomics feature selection is performed using recursive feature selection method. For genomics data, EdgeR method is utilized to select the differentially expressed genes between the mutated TP53 versus the non-mutated TP53 cases in the training set. The training classification model is constructed using Random Forest and cross-validated using repeated 10-fold cross validation. Finally, the predictive performance of the three models is assessed using the testing set. The three models, TP53-Radiomics, TP53-RadioGenomics, and TP53-Genomics, achieve a predictive accuracy of 0.84±0.04, 0.92±0.04, and 0.89±0.07, respectively. These results show promise of non-invasive MRI radiomics features and fusion of radiomics with genomics features for prediction of TP53

    Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas Using MR Imaging Features

    Get PDF
    Diffuse low-grade gliomas (LGG) have been reclassified based on molecular mutations, which require invasive tumor tissue sampling. Tissue sampling by biopsy may be limited by sampling error, whereas non-invasive imaging can evaluate the entirety of a tumor. This study presents a non-invasive analysis of low-grade gliomas using imaging features based on the updated classification. We introduce molecular (MGMT methylation, IDH mutation, 1p/19q co-deletion, ATRX mutation, and TERT mutations) prediction methods of low-grade gliomas with imaging. Imaging features are extracted from magnetic resonance imaging data and include texture features, fractal and multi-resolution fractal texture features, and volumetric features. Training models include nested leave-one-out cross-validation to select features, train the model, and estimate model performance. The prediction models of MGMT methylation, IDH mutations, 1p/19q co-deletion, ATRX mutation, and TERT mutations achieve a test performance AUC of 0.83 ± 0.04, 0.84 ± 0.03, 0.80 ± 0.04, 0.70 ± 0.09, and 0.82 ±0.04, respectively. Furthermore, our analysis shows that the fractal features have a significant effect on the predictive performance of MGMT methylation IDH mutations, 1p/19q co-deletion, and ATRX mutations. The performance of our prediction methods indicates the potential of correlating computed imaging features with LGG molecular mutations types and identifies candidates that may be considered potential predictive biomarkers of LGG molecular classification

    Joint Modeling of RNAseq and Radiomics Data for Glioma Molecular Characterization and Prediction

    Get PDF
    RNA sequencing (RNAseq) is a recent technology that profiles gene expression by measuring the relative frequency of the RNAseq reads. RNAseq read counts data is increasingly used in oncologic care and while radiology features (radiomics) have also been gaining utility in radiology practice such as disease diagnosis, monitoring, and treatment planning. However, contemporary literature lacks appropriate RNA-radiomics (henceforth, radiogenomics) joint modeling where RNAseq distribution is adaptive and also preserves the nature of RNAseq read counts data for glioma grading and prediction. The Negative Binomial (NB) distribution may be useful to model RNAseq read counts data that addresses potential shortcomings. In this study, we propose a novel radiogenomics-NB model for glioma grading and prediction. Our radiogenomics-NB model is developed based on differentially expressed RNAseq and selected radiomics/volumetric features which characterize tumor volume and sub-regions. The NB distribution is fitted to RNAseq counts data, and a log-linear regression model is assumed to link between the estimated NB mean and radiomics. Three radiogenomics-NB molecular mutation models (e.g., IDH mutation, 1p/19q codeletion, and ATRX mutation) are investigated. Additionally, we explore gender-specific effects on the radiogenomics-NB models. Finally, we compare the performance of the proposed three mutation prediction radiogenomics-NB models with different well-known methods in the literature: Negative Binomial Linear Discriminant Analysis (NBLDA), differentially expressed RNAseq with Random Forest (RF-genomics), radiomics and differentially expressed RNAseq with Random Forest (RF-radiogenomics), and Voom-based count transformation combined with the nearest shrinkage classifier (VoomNSC). Our analysis shows that the proposed radiogenomics-NB model significantly outperforms (ANOVA test, p \u3c 0.05) for prediction of IDH and ATRX mutations and offers similar performance for prediction of 1p/19q codeletion, when compared to the competing models in the literature, respectively

    Glioma Grading Using Structural Magnetic Resonance Imaging and Molecular Data

    Get PDF
    A glioma grading method using conventional structural magnetic resonance image (MRI) and molecular data from patients is proposed. The noninvasive grading of glioma tumors is obtained using multiple radiomic texture features including dynamic texture analysis, multifractal detrended fluctuation analysis, and multiresolution fractal Brownian motion in structural MRI. The proposed method is evaluated using two multicenter MRI datasets: (1) the brain tumor segmentation (BRATS-2017) challenge for high-grade versus low-grade (LG) and (2) the cancer imaging archive (TCIA) repository for glioblastoma (GBM) versus LG glioma grading. The grading performance using MRI is compared with that of digital pathology (DP) images in the cancer genome atlas (TCGA) data repository. The results show that the mean area under the receiver operating characteristic curve (AUC) is 0.88 for the BRATS dataset. The classification of tumor grades using MRI and DP images in TCIA/TCGA yields mean AUC of 0.90 and 0.93, respectively. This work further proposes and compares tumor grading performance using molecular alterations (IDH1/2 mutations) along with MRI and DP data, following the most recent World Health Organization grading criteria, respectively. The overall grading performance demonstrates the efficacy of the proposed noninvasive glioma grading approach using structural MRI

    Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction

    Get PDF
    Glioblastoma is recognized as World Health Organization (WHO) grade IV glioma with an aggressive growth pattern. The current clinical practice in diagnosis and prognosis of Glioblastoma using MRI involves multiple steps including manual tumor sizing. Accurate identification and segmentation of multiple abnormal tissues within tumor volume in MRI is essential for precise survival prediction. Manual tumor and abnormal tissue detection and sizing are tedious, and subject to inter-observer variability. Consequently, this work proposes a fully automated MRI-based glioblastoma and abnormal tissue segmentation, and survival prediction framework. The framework includes radiomics feature-guided deep neural network methods for tumor tissue segmentation; followed by survival regression and classification using these abnormal tumor tissue segments and other relevant clinical features. The proposed multiple abnormal tumor tissue segmentation step effectively fuses feature-based and feature-guided deep radiomics information in structural MRI. The survival prediction step includes two representative survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) global challenges in 2017 and 2018. The best overall survival pipeline in the proposed framework achieves leave-one-out cross-validation (LOOCV) accuracy of 0.73 for training datasets and 0.68 for validation datasets, respectively. These training and validation accuracies for tumor patient survival prediction are among the highest reported in literature. Finally, a critical analysis of radiomics features and efficacy of these features in segmentation and survival prediction performance is presented as lessons learned

    Deep Neural Network Analysis of Pathology Images With Integrated Molecular Data for Enhanced Glioma Classification and Grading

    Get PDF
    Gliomas are primary brain tumors that originate from glial cells. Classification and grading of these tumors is critical to prognosis and treatment planning. The current criteria for glioma classification in central nervous system (CNS) was introduced by World Health Organization (WHO) in 2016. This criteria for glioma classification requires the integration of histology with genomics. In 2017, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) was established to provide up-to-date recommendations for CNS tumor classification, which in turn the WHO is expected to adopt in its upcoming edition. In this work, we propose a novel glioma analytical method that, for the first time in the literature, integrates a cellularity feature derived from the digital analysis of brain histopathology images integrated with molecular features following the latest WHO criteria. We first propose a novel over-segmentation strategy for region-of-interest (ROI) selection in large histopathology whole slide images (WSIs). A Deep Neural Network (DNN)-based classification method then fuses molecular features with cellularity features to improve tumor classification performance. We evaluate the proposed method with 549 patient cases from The Cancer Genome Atlas (TCGA) dataset for evaluation. The cross validated classification accuracies are 93.81% for lower-grade glioma (LGG) and high-grade glioma (HGG) using a regular DNN, and 73.95% for LGG II and LGG III using a residual neural network (ResNet) DNN, respectively. Our experiments suggest that the type of deep learning has a significant impact on tumor subtype discrimination between LGG II vs. LGG III. These results outperform state-of-the-art methods in classifying LGG II vs. LGG III and offer competitive performance in distinguishing LGG vs. HGG in the literature. In addition, we also investigate molecular subtype classification using pathology images and cellularity information. Finally, for the first time in literature this work shows promise for cellularity quantification to predict brain tumor grading for LGGs with IDH mutations

    Prediction of Rapid Early Progression and Survival Risk with Pre-Radiation MRI in WHO Grade 4 Glioma Patients

    Full text link
    Recent clinical research describes a subset of glioblastoma patients that exhibit REP prior to start of radiation therapy. Current literature has thus far described this population using clinicopathologic features. To our knowledge, this study is the first to investigate the potential of conventional ra-diomics, sophisticated multi-resolution fractal texture features, and different molecular features (MGMT, IDH mutations) as a diagnostic and prognostic tool for prediction of REP from non-REP cases using computational and statistical modeling methods. Radiation-planning T1 post-contrast (T1C) MRI sequences of 70 patients are analyzed. Ensemble method with 5-fold cross validation over 1000 iterations offers AUC of 0.793 with standard deviation of 0.082 for REP and non-REP classification. In addition, copula-based modeling under dependent censoring (where a subset of the patients may not be followed up until death) identifies significant features (p-value <0.05) for survival probability and prognostic grouping of patient cases. The prediction of survival for the patients cohort produces precision of 0.881 with standard deviation of 0.056. The prognostic index (PI) calculated using the fused features suggests that 84.62% of REP cases fall under the bad prognostic group, suggesting potentiality of fused features to predict a higher percentage of REP cases. The experimental result further shows that mul-ti-resolution fractal texture features perform better than conventional radiomics features for REP and survival outcomes

    Prediction of Rapid Early Progression and Survival Risk with Pre-Radiation MRI in WHO Grade 4 Glioma Patients

    Get PDF
    Recent clinical research describes a subset of glioblastoma patients that exhibit REP prior to the start of radiation therapy. Current literature has thus far described this population using clinicopathologic features. To our knowledge, this study is the first to investigate the potential of conventional radiomics, sophisticated multi-resolution fractal texture features, and different molecular features (MGMT, IDH mutations) as a diagnostic and prognostic tool for prediction of REP from non-REP cases using computational and statistical modeling methods. The radiation-planning T1 post-contrast (T1C) MRI sequences of 70 patients are analyzed. An ensemble method with 5-fold cross-validation over 1000 iterations offers an AUC of 0.793 ± 0.082 for REP versus non-REP classification. In addition, copula-based modeling under dependent censoring (where a subset of the patients may not be followed up with until death) identifies significant features (p-value < 0.05) for survival probability and prognostic grouping of patient cases. The prediction of survival for the patients’ cohort produces a precision of 0.881 ± 0.056. The prognostic index (PI) calculated using the fused features shows that 84.62% of REP cases fall under the bad prognostic group, suggesting the potential of fused features for predicting a higher percentage of REP cases. The experimental results further show that multi-resolution fractal texture features perform better than conventional radiomics features for prediction of REP and survival outcomes
    corecore